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Abstract

This thesis deals mostly with two topics: cryptographic key exchange and formal
verification of cryptographic protocols. We begin with a thorough introduction to
Tamarin Prover, covering the major components of a Tamarin model and providing
a minimal example to build intuition for protocol specification with rewrite rules.
We discuss specifics of writing model code and lemmas, and explore the process
of automated theorem proving. We follow this with a discussion of the symmetric
and asymmetric settings in cryptography, and the general problem of key exchange.
Then, we present a specific, basic instance of a key exchange protocol, and we apply
Tamarin to it. Finally, we explain and apply Tamarin to a simplified version of QUIC,
a modern key exchange protocol developed by Google.






Introduction

Internet communication involves the sending and receiving of messages over unsecured
networks. Many parties are able to view communications sent over public channels,
and there is often a desire to encrypt these communications to protect them from
being read by parties with malicious intent. Cryptography aims to study methods
of communication in the presence of this adversarial behavior while making guaran-
tees of security to the communicating parties. A cryptographic system is built of
many small parts, each of which behaves and interacts with others in complex ways.
Cryptographers often prove properties of these small parts, but when the parts are
combined into a larger system it becomes increasingly difficult to guarantee security.
A protocol in cryptography is a set of rules that specify how some group of parties
is to communicate. Protocols rely on schemes, which in turn rely on cryptographic
primitives like block ciphers. While proving security of the underlying schemes and
functions in a protocol by hand may be manageable, determining whether the entire
protocol is secure requires a great deal of time and effort: the interaction of multiple
rules gives rise to significantly more complexity. Additionally, cryptographic schemes
and primitives are often designed and reasoned about purely mathematically, often
with insufficient consideration to their real-world implementation. On the other hand,
protocols are often born first in implementation, and then people later seek to create
proofs about their security. Because protocols are so inherently complex and tied to
implementation details, manual cryptographic analysis is often error-prone, expen-
sive, and limited by the level of abstraction used by the analyzer. In recent years,
a technique known as formal verification has begun to be applied to cryptography.
Formal verification, in essence, is a method of automating proofs with a computer.
Its utility to cryptography is both in small scale projects where it is not feasible to
involve a cryptographer, and in large-scale, real-world protocols that are complex
enough for manual analysis to be impractical.

Tamarin Prover is a tool for cryptographic formal verification released in 2012

[1]. Its backend is written in Haskell. The primary mechanic for automatic proofs



2 Introduction

in Tamarin is a rule-based rewriting system, in which the language keeps track of a
global state as a set of facts that can be rewritten according to the provided set of
rules. For a user of Tamarin who seeks to analyze a protocol, there are three main
elements to interact with: the model, the lemmas, and the proof. Tamarin is a model
checker in its presentation to the user, but unlike other major protocol verification
tools [2], its internal mechanism for generating proofs is a constraint solver.

A particularly interesting problem in cryptography (and one well-suited to formal
verification for its relative ease of understanding) is key exchange. Many schemes
with proven security properties rely on the existence of a shared secret key between
multiple parties, and the establishment of this shared secret key is not a trivial task.
A party of course cannot send the key over a public channel, but it also isn’t possible
to send an encrypted version of a key, as this would again rely on the prior existence of
some shared secret key. In this paper, we present the ‘Diffie-Hellman key exchange’
[3], the first published method for securely exchanging cryptographic keys over an
insecure communication channel. We then show a model in the Tamarin Prover
language for Diffie-Hellman and explore some security results.

QUIC (Quick UDP Internet Connections) is a modern transport layer protocol
developed by Google which has a key exchange phase [4][5]. In certain cases, QUIC
enables a client and server who have communicated before to establish a new shared
secret key while simultaneously sending data. This is known as 0-RTT (zero round-
trip-time) connection resumption or handshake. Whereas a single round trip time
would normally be spent on establishing a shared key before the transmission of
data, QUIC eliminates this waiting time [5]. We present a simplified version of this
mode of QUIC as a standalone protocol and apply Tamarin to it, examining liveness

and security properties.



Chapter 1
Tamarin Prover

Tamarin aims to be on the completeness side of a theoretical completeness-vs-ease
of use tradeoff, but it also provides an interactive means of viewing and working
with proofs. Sometimes, the user needs to provide guidance through this interactive
interface. Depending on the approach to modelling a protocol in Tamarin, different

degrees of user assistance can be required.

1.1 Overview

While cryptographers are able to prove security of primitives such as encryption
schemes through quantifiable proofs of properties like semantic security, protocols
often give rise to significantly more complexity than can be reasoned about purely
with symbolic manipulation on paper. Tamarin aims to offer an automated, symbolic
solution to the problem of proving security properties of cryptographic protocols.
Tamarin is a tool that allows a user to specify an entire protocol at some level of
abstraction in terms of “rewrite rules.” These are rules that operate on a multiset
of current facts in the system state. The user then writes logical lemmas that repre-
sent desired security properties, and uses an interactive interface to watch and guide

Tamarin’s engine in proving these lemmas.

1.2 Tamarin’s Formal Verification

We briefly mention the formal verification methods used by Tamarin Prover. The
problem of creating proofs for a set of logical statements (lemmas in Tamarin’s case)

which apply to a specified model is known as model checking. Internally, however,
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Tamarin Prover works as a constraint solver.

1.2.1 Constraint Solving

A constraint solver is a tool that solves constraint satisfaction problems. This is
essentially the problem of finding a satisfying assignment of variables that have been

constrained in terms of each other.

Letter Addition Problem

S END
+ M ORE

This is a canonical example of a constraint satisfaction problem, sometimes called an
‘alphametic problem.” The goal is simply to assign a number to each letter variable
so that the addition is mathematically correct. In this case, the constraints on the
values of each variable are defined by the given equation. The correct answer is the

following assignment:

S:9 E:
N:6 D:
M:1 O:
R:8 Y:

NSO 3 Ot

In solving constraint satisfaction problems, it is often much too costly to check per-
mutations on the variables. In practice, constraint solvers often use heuristics and

other optimizations to reduce the search space.

1.2.2 Model Checking

A model checker is a tool that checks whether a model of a system (in essence,
a description of some finite state machine) meets a set of specifications. Typically,
model checkers don’t do an exhaustive search to prove properties, but rather represent
the system using some formula in propositional logic and attempt to simplify it. There
are many advanced techniques that simplify systems or bound the number of steps

to make the problem easier to solve.
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1.3 Components of the Model

Protocols are specified in Tamarin using a rule rewriting system of logical premises
and conclusions. The logical premises include some facts about the current state of
the parties in the network, and the conclusions then modify the state in some way.
We can also associate rules with certain temporal variables (variables that refer to a
point in time and can be compared to other temporal variables) using “action facts,”
which become useful in the lemmas section. For the proof generation, what Tamarin
is doing in essence is taking the negation of the lemmas we want to be true, and then
finding a violating “trace.” A violating trace is an ordering of application of rewrite

rules on the global state that results in the negation of the lemma being satisfied.

1.3.1 Facts

A fact is simply an object associated with variables of certain types. Syntactically, a

fact looks like the following:

FactName (A, !B,C)

where the name FactName is the name of the fact, and the names inside refer to typed
variables. We refer to the binding of the typed variables listed in the specified order

with the name of the fact as a signature.

1.3.2 Rules

A rule consists of a premise, an optional action fact (not shown), and a conclusion.
Syntactically, a rule looks like this:
rule Name:

[leftside (A)]

-—>

[rightside (A)]

The left side of the rule (shown here above the arrow) is the premise, and specifies the
facts that must exist in the system’s state and be matched for the rule to be applied.
The right side of the rule is the conclusion. It specifies which facts will be written
into the system’s state when the rule is applied. When evaluating the left side of
the rule, Tamarin does pattern-matching on any fact in the system state that might
match the signature of a required rule. Specifically, a match is possible where two
facts have the same name and are bound to typed variables listed in the same order.

This way, variables in the same position in a fact can simply be renamed within the
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context of a rule. Generally, when Tamarin applies a rule, the facts on the left side
are deleted from the state, and the facts on the right side are added to the state. The

one exception to this is provided deliberately by persistent facts (see Section 1.6).

1.3.3 Action Facts

Like a normal fact, an action fact is an object associated with variables, but it also
serves a vital role in proofs. Syntactically, action facts appear between the left and

right hand side of rules in the following form:

--[Fact(A,B,C)]->

The purpose of an action fact is to appear on the trace. Tamarin Prover’s job is to
explore different traces, searching for violations of properties. Specifically, if a rule
with an associated action fact is applied at any time during a particular execution,
it appears on the trace associated with that execution. This is useful because our
lemmas make claims that refer directly to these action facts, requiring properties such

as temporal ordering or inequality.

1.3.4 Fresh Facts

New variables can be introduced to the Tamarin state through the use of the “fresh”
keyword. Syntactically, a rule that uses a fresh fact looks like the following:
rule introduce_n:

[ Existing(x), Fr("n) ]

-=>

[ New(x, n),0ut(<x,"n>) 1]

Even though the fresh variable n did not exist in the state before the application of

introduce_n, we were able to introduce it through the use of the Fr keyword.

1.3.5 The Public Channel

Tamarin’s modelling of protocols assumes one public channel, to which all parties in
the system have access. By default, the adversary is a Dolev-Yao [6] adversary that
can intercept and modify any message being sent over the public channel. Syntac-
tically, we interact with Tamarin’s public channel through the keywords In() and
Out (). For example:

rule Reveal_1ltk:
[ 'Ltk ($X, 1tk) 1]
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-->
[ Out(1ltk) ]

Rule Reveal 1tk represents the instance in which the long-term key associated with
party $X is revealed to the adversary. Similarly, a rule’s left hand side could contain
In() with some signature, and this rule could be applied after a fact with Out () in

its conclusion had been applied.

1.3.6 Lemmas

A lemma is a property written explicitly in boolean logic in terms of action facts,
variables, and temporal variables. To analyze a protocol in Tamarin, we write security
properties in the lemmas section. Lemmas are specified in reference to the temporal
variables associated with certain rules in the protocol. For example, a lemma might
state that for all session keys k, there exists a server that answered a request, and no
other client had the same request, and so on. Proofs take into account the rules that

specify the execution and the black box equations that are defined.

1.4 Records in the System

Tamarin maintains four internal structures through any execution of a proof: the
state, the trace, the public channel, and the set of instantiations of variables known
by the adversary. The last item refers specifically to the variables associated with a

particular application of a rule and only to variables within action facts on the trace.

1.4.1 State

The state of the system simply represents an unordered multiset — also referred to
in documentation as a “bag” — of facts. Consider the following rewrite rule:

rule Demonstrate_state:

[Fr(x) ,Fr(y)]
-—>
[Fact_1(x),Fact_2(y)]

At the end of a valid trace for a theory where Demonstrate_state is the only rule

and is applied exactly twice, the state could look like:

{Fact_1(X.1), Fact_2(X.2), Fact 2(Y.1), Fact 2(Y.2)}



8 Chapter 1. Tamarin Prover

Notice that the state can contain multiple facts of the same name, but they are
distinguished by the instantiations of variables (as unique constants) bundled in the

facts.

1.4.2 Trace

The trace represents a partial ordering of action facts corresponding to the application
of rules. In a trace, some rules must have been applied in a certain order, and others
do not have this requirement. The trace is the actual object that Tamarin prover
interacts with when proving lemmas. More specifically, Tamarin searches through
the space of possible traces given the rewriting rules, and formulates a proof. If the
lemma is not satisfied, Tamarin simply needs to find a trace that violates the lemma.
If the lemma is satisfied, Tamarin will disprove the negation of the lemma. The total

set of possible traces is defined by the rules specifying the protocol.

1.4.3 Public Channel

The public channel (see Section 1.3.5) is a structure that tracks all messages sent
during an execution of the protocol. Messages over the public channel are pattern-

matched in the same way as rule signatures (see Section 1.3.2).

1.4.4 Known Variables

The set of known variables simply represents the instantiations of variables that the
adversary is able to compute the value of at a certain time. In lemmas, we can check

membership of this set with the syntax:

K(x) @ #i
indicating that the adversary knows the variable x at time i. To express secrecy of a
variable, one could specify:

not (Ex #j. K(x)@j)
More precisely, K is an action fact that is implicitly defined for any variable in a
model. Tamarin includes the following builtin rule to allow this:

rule isend:
['KU(x)]
--[K(x)1->
[In(x)]
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The rule isend being applied means that the adversary is able to call Out on variable
X, so that the conclusion of the rule is valid. The persistent fact 'KU(x) denotes that

the adversary knows x.

1.5 Minimal Example

1.5.1 First Attempt

To illustrate the role of the trace in Tamarin’s proofs, we will examine a minimal
example of a Tamarin model. This example is purely illustrative, and it does not
contain any cryptographic components. The idea is to write three rules which can
logically be applied in only one order by the nature of the facts they specify. The
first rule creates a fact that is necessary for the second rule to be applied, which in
turn creates a fact that is necessary for the third rule to be applied. We provide only
three rules.

theory Minimal

begin

rule create_fact:

(]
--[Create()]->
[Fact (A)]

This rule allows Tamarin to add a fact of signature Fact(x) to the state. It is
associated with action fact Create (), which has no associated variables.
rule consume_and_create:

[Fact (B)]

--[Consume ()] ->
[New_Fact (C)]

This rule allows Tamarin to consume a fact of signature Fact (x) from the state, and
add a fact of signature New Fact(y). It is associated with action fact Consume(),
which has no associated variables.
rule delete:

[New_Fact (D)]

--[Delete ()]1->
[]

This rule allows Tamarin to consume a fact of signature New_Fact (y) from the state,

replacing it with nothing. It is associated with action fact Delete(), which has no
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Runeing Tassne 1.6:1 index Download | Actons Opions » !

Proof scripts Visualization display

theory Mininal begin
‘Theory: Minimal (Loaded at 14:22:40 from Local *./minimal.spthy")
Message theory

Quick introduction
Multiset rewriting rules (5)

Left pane: Proof scripts display.

ns complete)

« When a theory is initially loaded, there will be a line at the end of each theorem stating "by sorry // not yet proven®. Click on sorry to inspect the proof state.
ctions conplete) « Right-click to show further options, such as autoprove.
lema create_before_delete: Right pane: Visualization.

all-traces

o

P « Visualization and information display relating to the currently selected item.
((Create( ) € #1) A (Delete( ) @ #3)) = (# <

o sorry Keyboard shortcuts

end 37K | Jump to the next/previous proof path within the currently focused lemma.

/K | Jump to the next/previous open goal within the currently focused lemma, or to the next/previous lemma if there are no more sorry steps in the proof of the current lemma.

1-9 | Apply the proof method with the given number as shown in the applicable proof method section in the main view.

a/A | Apply the autoprove method to the focused proof step. @ stops after finding a solution, and A searches for all solutions. Needs to have a sorry selected to work.

b/B | Apply a bounded-depth version of the autoprove method to the focused proof step. b stops after finding a solution, and B searches for al solutions. Needs to have a sorry selected to work.

? | Display this help message.

Figure 1.1: Opening a Theory in Tamarin

associated variables.

lemma create_before_delete:
"AL11l #1i #j.
Create() @ #i & Delete() @ #j

Lemma create_before_delete asks Tamarin to prove a common sense statement:
that if rules create and delete are applied, create must be applied first. It seems
that since for delete to be applied, there must be a New_Fact fact in the state first,

we can trace this logic backwards to conclude that create fact must be applied
before delete.

Proof

Now, we run this model in Tamarin to check the lemma. This is also a good oppor-

tunity to explore some of the features of Tamarin’s interactive proof interface. In a

terminal, we run:
> tamarinprover interactive minimal.spthy
And see the terminal message:

The server is starting up on port 3001.

Browse to http://127.0.0.1:3001 once the server is ready.

which starts a local server that presents a browser-based interface (see Figure 1.1).
Now, when we prompt Tamarin to prove the lemma, we see the result in Figure 1.2.

It turns out that our intent for the model does not actually match its logic. Tamarin
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theory Minimal begin Constraint System is Solved

Message theory

. L Constraint system
Multiset rewriting rules (5)

Raw sources (5 cases, deconstructions complete) Fr(~n.2)
#vr.1 : create_fact{Create( )]

Refined sources (5 cases, deconstructions complete) Facl n2) b

lemma create_before_delete: r_/
all-traces Fac(-n.2) | Fr(-n1)
VHL#). #vr : consume_and_create[Consume )]

((Create( ) @ #1i) A (Delete( ) @ #3)) = (#i < i e

#3O" New_Fact( ~n.1)

simplify *

solve( New_Fact( D ) w»e #j )

case consume_and_create AL ),

SOLVED // trace found #j : delete[Delete( )]
qed
end Fr(~n)

#i: create_fact[Create( )] ’

Fact( ~n )

Figure 1.2: Proving a Lemma in the Minimal Theory

found a trace violating this lemma in which it applies the three rules in the expected
order and then simply applies the rule create _fact for a second time, after delete
has been applied. We can see from Figure 1.2 that it associates the second instance of
action fact Create on the trace with time #i to show a precise instance of a violating
trace for the lemma. Because the proof is of a violation of a lemma, Tamarin only

needed to show one violating trace.

1.5.2 Fixing the Model

Tamarin provides a specific type of lemma called a restriction to address this problem.
We could also modify create_before_delete to achieve the same effect, but in the
case that we wanted to prove more than one lemma, we would need to modify every
one of them. This would make the lemmas section more verbose and unnecessarily
complicated. The purpose of a restriction is to limit the set of traces that Tamarin
searches on when proving lemmas. A restriction simply states a property that a trace
must satisfy to be considered in later proofs. In this minimal case, we are expecting

the create_fact rule to be applied only once. To express this property in Tamarin’s
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lemma create_before_delete:

all-traces

"V O#io#j.

((Create( ) @ #i) A (Delete( ) @ #j)) = (#i <

#30"
simplify
solve( New_Fact( D ) »e #j )

case consume_and_create

by contradiction /* cyclic */
gqed

Figure 1.3: Proof of Lemma in Revised Minimal Theory with Restrictions

sorted first-order logic, we can use the following:

restriction create_once:

"A11l #1i #j.
Create() @ #i & Create() Q@ #j
==>
#i = #j

The logical statement here is that for an arbitrary pair of applications of the Create
rule associated with timepoints #i and #j, it must be the case that #i = #j. This
means that any trace with more than one application of Create will be excluded from
consideration, since they will of course have to be associated with distinct timepoints.

Running the theory and prompting Tamarin to prove lemma create_once again,
we see the result in Figure 1.3. Note the lack of trace diagram: this is because
Tamarin’s claim is that there does not exist a violating trace to the lemma under the
current restrictions, and that it is therefore true.

We can prompt Tamarin to expand on its explanation, by selecting “contradic-
tion.” We see the image shown in Figure 1.4, indicating the same logic we arrived
at intuitively in designing the example. The solid arrows indicate necessary tempo-
ral ordering, and the dashed arrow indicates the temporal ordering that would be
required to violate the lemma. We can see that it is impossible for #i > #j.

We can further probe Tamarin’s interface to understand its reasoning for the
proof. The Refined Sources section shows the preconditions for the rules in the model
to be applied. Figure 1.5a shows that create_fact has no preconditions, and can
simply be applied on an empty state. Figure 1.5b shows that consume _and create
has the precondition of a Fact fact existing on the state, which can only arise with

create_fact having just been applied.
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Fr(~n)

#i: create_fact[Create( )] |-@ - .

Fact( ~n ) b
Fact( ~n) Fr(~n.1)

#vr : consume_and_create[Consume( )]

New_Fact( ~n.1)

v

New_Fact( ~n.1)
#] : delete[Delete( )] |- - -~

Figure 1.4: Explanation of Proof in Minimal Theory

1.6 Sorts

Variables in Tamarin have a limited set of types. Tamarin refers to these types as
“sorts” (a term from specific algebra domains), but they are types in the context of
Tamarin modelling. A variable’s sort must be consistent throughout its invocations,
and casting between sorts is not possible.

Note that from this point, font will be used as an element of notation to indicate
whether a variable or name is being referred to symbolically in Tamarin, or computa-
tionally as in a real implementation of the protocol. We use x to represent a Tamarin
name, and x to represent the true value of variable or function that will be computed

if the protocol is executed by real parties.

1.6.1 Persistent

Syntax !'F denotes that F' is a persistent fact. While facts are normally removed from
the state when a rule is applied if they appear in the left side of a rule and not the

right, persistent facts always remain in the state.
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Source 1 of 1 / named "consume_and_create"

Source 1 of 1 / named "create_fact" Fr(~n.9)
#vr.6 : create_fact[Create( )]
Fact( ~n.9) b
Fr(~n.5) 7
#vr.2 : create_fact{Create( )]
Fact( ~n.9) | Fr(~n.5)
Fact(~n.5) #vr.2 : consume_and_create[{Caonsume( )]

* New_Fact( ~n.5)

[‘I. G) w

(a) Raw Sources: create_fact (b) Raw Sources: consume_and_create

Figure 1.5: Raw Sources

1.6.2 Fresh

Syntax “x denotes that z is a fresh variable. Fresh variables are meant to model the
properties of a random, distinct new number in a cryptographic protocol. The fresh

type can be used for things like keys and nonces.

1.6.3 Public Name

Syntax $S denotes that S is a public name. A public name is known by all parties in

a protocol, such as the name of a server or a client.

1.6.4 Message

Syntax m denotes that m is simply a ‘message’. Tamarin documentation is somewhat
ambiguous in addressing why this sort is referred to as a message. The message sort
can represent the objects being passed between parties, but it is also a sort of default

type with no additional properties.

1.6.5 Public Constant

Syntax ‘c’ denotes that c¢ is a public constant. They are known by all parties in
the protocol, including adversaries. For example, a Diffie-Hellman group generator g

would be syntactically represented as Syntax ‘g’



1.7. Adversary Type and Assumptions 15

1.6.6 Temporal Variable

Syntax ‘#i’ denotes that i is a temporal variable. The temporal sort only applies
to certain variables within lemmas (see Section 1.5 for example). It is a variable
that refers to a point in time (in a trace) relative to other points in time. Temporal

variables have binary comparisons =, <, and > implemented as operations on their

type.

1.7 Adversary Type and Assumptions

Tamarin models the adversary as a Dolev-Yao adversary (Dolev & Yao 1983) by
default. Every model works under the assumption that all parties, including the
adversary, have access to a common broadcast channel, so everything passed to a call

of Out is visible to an adversary.






Chapter 2
Two-party Key Exchange Protocols

In this chapter, we discuss how key exchange involves symmetric and asymmetric-
key cryptography. We also introduce some underlying concepts, particularly in the

symmetric setting.

2.1 Asymmetric and Symmetric Settings

In this section, we present the two settings in cryptography in order to provide back-
ground for a type of protocol that takes a communication from the first setting to the

second.

2.1.1 Symmetric Setting

Symmetric key cryptography describes the setting in which trusted parties share a
secret key k prior to communicating. This key £ is used by all trusted parties both to
encrypt! messages with some encryption function and also to decrypt them. We will
introduce AEAD (authenticated encryption with associated data.) We can formalize
the notion of symmetric scheme AEAD as follows [7]:

Let AEAD be a symmetric encryption scheme. AEAD contains a triple of al-
gorithms KG, Enc, and Dec. It also has the associated sets Message € {0,1}*,
Nonce € {0,1}" for a fixed n, Header € {0, 1}*, and K: the key space.

!Encryption is not the only goal of schemes within the symmetric setting, or in cryptography in
general: there are also schemes designed for other purposes such as authentication of messages. We
will only talk about a form of encryption to give an example of syntax and definitions.
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KG: Key Generation

KG is a randomized algorithm that takes no inputs and returns a secret key k € K.

Enc: Encryption

Encryption algorithm Enc takes a key k € K, N € Nonce, H € Header, and plaintext
m € Message. It returns a ciphertext ¢ = Enc%’H(m) or a special symbol L indicating

failure as output.

Dec: Decryption

Decryption algorithm Dec takes k, N € Nonce, H € Header, and ciphertext ¢ and

returns plaintext Decg’H, which is either a string in Message or |, as output.

Correctness

It is required that

Vk € K, N € Nonce, H € Header, c € {0,1}* : Decy " (Ency"" (m)) = m.

Security

We generally use two security definitions for AEAD: PRIV and AUTH. Informally,
AdvERV(A) T is measured as the scaled and shifted probability (scaled and shifted
so that a 0 value for advantage corresponds to the advantage of an adversary whose
guesses are no better than random) that adversary A is able to distinguish between
a random bitstring and a ciphertext generated by Enc; for some key k.

Advantage Advi”™
Ency, for some key k who tries to output (N, H, C) where Deciv’H = 1. This is called
a forgery. We say that AEAD scheme I is secure if Advic" (A) and Advi’TH(A) are

small for a reasonable adversary A.

(A) deals with an adversary A with access to encryption oracle

2.1.2 Asymmetric Setting

Asymmetric key cryptography, also known as public-key cryptography, is the setting
in which each party has a pair of mathematically related keys: a private key and a

public key. Unlike in symmetric key cryptography, where the same key is used for

!The advantage of adversary A against AEAD scheme IT under security definition PRIV
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both encryption and decryption, asymmetric key cryptography uses these two distinct
keys.

For each party, the public key is visible to all other parties (including adversaries)
and can be used by anyone to encrypt data that is intended to be sent to the owner
of the corresponding private key. The private key is kept secret by the owner and
is used for decrypting the data that has been encrypted with the public key. An
important requirement of public-key cryptography is that the public key cannot be
used to determine the private key or to decrypt messages.

Generally, public key encryption (PKE) schemes which are secure under chosen
ciphertext attacks are considered strong schemes in the asymmetric setting. See [§]
for a formal presentation of syntax, correctness, and security of PKE. We will not

formalize these concepts in this paper.

2.2 Key Exchange

Key exchange describes the process by which two parties securely exchange crypto-
graphic keys. The problem key exchange aims to solve is creating an environment in
which symmetric cryptography is possible. Symmetric key cryptography requires a
shared secret key, but aside from making two parties agree on a key outside of the
network (e.g. in person), the most commonly used way to establish a shared key is
with asymmetric cryptography. In Section 3.1, we present a standard asymmetric

setting approach to key exchange.






Chapter 3

Tamarin for Two-Party Key
Exchange

In this chapter, we first present the Diffie-Hellman key exchange protocol. We then
examine the process of modelling it in Tamarin Prover, discussing the rewrite rules

and how they correspond to a real-world execution of the protocol.

3.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol is a classic key exchange protocol (see
Section 2.2) which can illustrate the complexity of designing protocols in general.

Alice and Bob want to establish a shared secret key that they can use to encrypt
messages and send to one another with a symmetric scheme like AEAD
(see Section 2.1.1). The idea is for Alice and Bob, after exchanging a few messages
over a public, unsecured channel, to end up with this shared secret. We start with
two values that are known by everyone: p, a large prime number, and ¢, which is
a generator in a cyclic group. In this case we use the cyclic group Z;, which is the
set of integers {1,...,p — 1} and the operation multiplication modulo p. Then, Alice
privately decides on a secret key a, chosen from this set, and Bob decides on his own
secret key by the same method. At this point, Alice and Bob only know their own
secret keys.

Now, Alice computes a new value, which is the public generator composed with
itself by the group operation a times, modulo p (¢* mod p), and then sends this value
over the network. The important detail here is that this does not leak Alice’s private
key to the adversary, because computing a from A is an instance of the discrete log

problem, which is hard to compute on some large cyclic groups. Bob does the same,
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Public parameters:

g, P
Alice Bob
$ $
a < {2,.,p—2} b < {2,.,p—2}

A

A+ ¢g°modp B < ¢* mod p
B

KAlice < (B)a KBob — (A)b

Figure 3.1: Diffie-Hellman Key Exchange. Notice that K yjcc = Koy = ¢%° and we

are operating in the fixed group Z;. We write z & X to denote that z is chosen
uniformly from set X.

and now both Alice and Bob know their own secret keys and the value they just
received from the other party. For the last step, they raise the received value to their
secret key, and since we are working within a group, the values they calculate are

equal by associativity.

a
KAlice =B

=(¢")°

ab

= (g7
= (4)°
= KBob

Although this works under certain conditions, there is a vulnerability. A man-in-
the middle attack can easily compromise the entire protocol. Specifically, an adver-
sary Fve under the Dolev-Yao model can intercept every message and synthesize a
replacement message to pass on to the other party [6]. For example, consider replac-
ing party Bob in Figure 3.1 with adversary Eve. Alice has no way of verifying that
the party she is communicating with is Bob, and Eve can simply carry out the key

exchange choosing their own value for b.
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3.2 Rules

We further introduce protocol modelling using Tamarin rewrite rules by modelling

the Diffie-Hellman key exchange protocol described in the previous section.

3.2.1 Preamble

At the very beginning of the model, we start with some boilerplate code.

theory BasicDiffieHellman
begin

builtins: diffie-hellman

This starting code indicates that the name of the theory we are modelling is

BasicDiffieHellman, and the syntactic element begin simply indicates the begin-
ning of the model. Importantly, Tamarin includes a builtin called diffie-hellman
that allows for explicit modelling of Diffie-Hellman exponentiation (see Section 3.1)
with the =~ operator. Line 4 specifies this as an included builtin to indicate that

instances of this operator should be parsed as such.

3.2.2 Create_Identities

Our first rewriting rule takes an empty system state and creates the identities of the

parties that will act in the protocol.

rule Create_Identities:
let
pk = ‘g’~"sk
in
[Fr("sk)]
-=>

[Out (pk),!Identity ($A, "sk,pk)]

The only fact on the left side of the rule is Fr ("sk), which does not require anything to
be in the current state. (see Section 1.3.4). Since it is a fresh fact, it instantiates the
variable “sk. We are relying on the fact that both parties in this simple case of Diffie-
Hellman key exchange simply have a public/private key pair and no other associated
information. This way, we only need one rule to add both necessary identities—the
client and the server—to the state. According to the definition of Diffie-Hellman, and
as is understood in public-key cryptography, the public key of any party is required

to be some function of its secret key.
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In lines 1-3, we use Tamarin’s let construct to specify this constraint. Another
feature provided by Tamarin’s diffie-hellman builtin is the syntactic notion of using
‘g’ "A, where g is the public constant being used for exponentiation, and A € Z.
Recall that ‘c’ denotes that c is a public constant. (see Section 1.3.4)

The conclusion of this rule has two effects: the addition of persistent fact
I Tdentity ($A, “sk,pk) to the state and the broadcasting of pk on the public channel.
The persistent identity is associated with $A, some public name. It contains a secret
key and public key associated with the named party. We use Out (pk) to model the
fact that every party on the network has access to any party’s public key. Both the

intended party and the adversary can access the public key from the common channel.

3.2.3 Client_Hello

Client _hello models the client’s first message to the server.

rule Client_Hello:
['Identity($C, C_sk,C_pk),!Identity($S, S_sk,S_pk)]
-—>
[Out(<‘client_hello’,$C,$S,C_pk>)]

It corresponds with the first flow in Figure 3.1. In practice, this message simply
contains the client’s public key, calculated as ‘g’ raised to its private key. We will
see that Tamarin’s representation needs to be slightly different.

First, the premise of this rule contains two facts. They are both !Identity facts,
which is an attainable scenario if Tamarin executes Create_Identities at least twice.
In the rule’s premise, we assign different variables within the !Identity facts, but
Tamarin pattern-matches these with any existing !Identity fact in the multiset.
This is why we are able to start with a rule that produces an identity with associated
public name $A, and still use names $S and $C.

Having required the existence of these two parties, we send a client hello on the
public channel, which (most importantly) contains C_pk: the client’s public key. We
represent the message as a tuple within angle brackets, and include the client and
server public names for convenience when distinguishing between messages.

Another detail to note is that since the ! Identity facts are persistent, we do not
need to include them on the right side of the rule, and they will remain in the fact

multiset (see Section 1.4).
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3.2.4 Server_Response_And_Get_Session_Key

The next step in the protocol is for the server to respond to the client’s initial message
with its own public key. However, we also have to handle the server’s internal state

and representation of the information it has.

rule Server_Response_And_Get_Session_Key:
let
S_k = C_pk~"S_sk
in

['Identity($S,”S_sk,S_pk),In(<‘client_hello’,$C,$S,C_pk>)]
--[ServerSession($S,$C,S_k)]1->
[Session($S,S_k) ,0ut(<‘server_hello’,$S,$C,S_pk>)]

Rule Server Response_And Get_Session Key corresponds with the second flow in
Figure 3.1. As expected, we have two facts in the premise: the server’s identity and
the expected receipt over the public channel of a client hello message. When the
server receives this public key from the client, we model it as immediately creating a
session key. In the let binding in lines 2-4, we calculate a session key as

C_pk =~ S_sk, which is equivalent to (A)° in Section 3.1.

In the conclusion of this rule, we store this calculated value in the fact called
Session($S,S k), which gets associated with the same public name variable as the
server. Then, we are finally able to send the server’s response on the public channel
using Out ().

The other notable feature of this rule is the action fact ServerSession, which we

will use later to check properties of the protocol.

3.2.5 Client_Create_Session_Key

Rule Client Create _Session Key is the last step of the simple Diffie-Hellman pro-

tocol.
rule Client_Create_Session_Key:
let
C_k = S_pk~~"C_sk
in
[!Identity($C, C_sk,C_pk),In(<‘server_hello’,$S,$C,S_pk>)]
--[ClientSession($C,$S,C_k)]1->
[Session($C,C_k)]

We require a client identity to be in the state, and listen on the public channel (line

5) for the server hello message. We again use a let binding to obtain C k, the
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intended session key. We create another action fact within this rule, also for property

checking.

3.3 Lemmas

Now, we will examine two simple lemmas that can be applied to check properties of
this model.

3.3.1 liveness

The 1liveness lemma asks Tamarin to show that it is possible for the protocol to be

run in a way that results in an agreement on session keys between the two parties.

lemma liveness:

exists-trace

(

Ex S C k_1 k_2 #i #j.
ServerSession(S,C,k_1) @ #i &
ClientSession(C,S,k_2) @ #j &
not(C = S) &

#i < #j &

(k_1 = k_2)

)

The exists-trace keyword indicates that Tamarin needs only to find one trace that
satisfies its logical formula. Variables k-1 and k_2 (appearing after the existential
quantifier in line 5 along with #i and #j) indicate each party’s apparent session key
at the time their message-sending rule is being applied. Temporal variables #i,#j
serve to represent the order of rules being applied. By including #i < #j, we require
that the ServerSession action fact appears on the trace before ClientSession does,
which we expect in a normal execution of the protocol. Including not(C = S) pre-
vents the case where the two parties have the same identity. Prompting Tamarin
to prove the lemma, we see Figure 3.2, indicating that the lemma is satisfied by the

model.
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lemma liveness:
exists-trace
"3 S C k.1 k_2 #i #5.

(CC(ServerSession( S, C, k.1 ) @ #i) a
(ClientSession( C, S, k.2 ) @ #j)) A
(=(C =50 A

#i o< #3)) A

(k.1 = k_2)"

simplify
solve( !Identity( $S, ~S_sk, S_pk ) wo #i )
case create_identities
solve( !Identity( $C, ~C_sk, C_pk.1 ) we #j )
case create_identities
solve( splitEqgs(@) )
case split_case_3
solve( splitEqs(l) )
case split_case_1
solve( !'KUC xA~C_sk ) @ #vk.9 )
case client_hello
solve( 'KUC 'g'A~S_sk ) @ #vk.11 )
case client_hello
SOLVED // trace found
ged
ged
ged
ged
qed
ged

Figure 3.2: Tamarin result for 1iveness

3.3.2 secrecy

The secrecy lemma aims to check if for all traces (note the absence of exists-trace.
Lemmas by default are checked in the all-traces case), the adversary is not able to

discover the session key of either the client or server.

lemma secrecy:

"

A1l C S k_1 k_2 #i #j.

(
ClientSession(C,S,k_1) @ #i &
ServerSession(S,C,fk_2) @ #j &
#j < #i &
not (C = S)

)

==> not (Ex #1 #m . K(k_1) @ #1 & K(k_2) @ #m)

As described in Section 1.4, the K(x) keyword is another Tamarin namespace reserved

action fact name which denotes that a theoretical adversary “knows” the variable x.
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lemma secrecy:
all-traces
"v CS k.1 k.2 #i #].
((((ClientSession( C, S, k.1 ) @ #i) A
(S, G k2)e

(ServerSession( S, C, #3)) A
8 < #)) A
-(C =) =
(=3 #k1 #k2. (KC k1) @ #k1) A (KC k.2 ) @ #Kk2)))"

simplify
solve( !Identity( $C, ~C_sk, C_pk ) »o #i )
case create_identities
solve( !Identity( $S, ~S_sk, S_pk.1 ) we #j )
case create_identities
solve( splitEqs(@) )
case split_case_1
solve( 'KUC S_pkA~C_sk ) @ #vk.12 )
case client_hello
solve( splitEgs(1l) )
case split_case_1
solve( !'KUC C_pkA~S_sk ) @ #vk.13 )
case client_hello
SOLVED // trace found
ged
qed
qed
ged
qed
qed

Figure 3.3: Tamarin result for secrecy

The implication that this lemma specifies with ==> is that there do not exist two
points in time such that the adversary knows the first key and the second key at the
second time. The property that implies this simply includes the two relevant action
facts which reference the two parties and their keys, using the builtin K to denote
the adversary knowing each of the keys. As wee see in Figure 3.3, Tamarin is able to
find a violating trace, and the lemma is not true. This is the result we expected from
Section 3.1.
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Applying Tamarin to a Real World

Protocol

In this chapter, we discuss QUIC, a protocol created by Google [5]. We present a
simplified version of the protocol based loosely on material in [4], and then model it

in Tamarin Prover as in the previous chapter.

4.1 The Protocol

QUIC (Quick UDP Internet Connections) is a transport layer protocol designed to
be fast and extensible. QUIC is built on top of UDP (User Datagram Protocol),
which allows for extensibility, as compared to TCP which is often implemented in the
kernel. One of its most novel and interesting features is the 0-RTT (zero round-trip-
time) connection establishment. At a high level, the idea of this mode of connection
establishment is that the client remembers some configuration information from a
previous session with the server that can be used to immediately begin securely
transmitting data. To illustrate QUIC’s 0-RTT operation, we consider SQUIC 0-
RTT, a simplified QUIC-like protocol that abstracts away implementation details as
shown in Figure 4.1.

The assumption before this protocol runs is that the client and server have es-
tablished a connection prior to this execution, within some recency constraint. The
client knows pk; (the server’s public key), which is equal to g*, where z is the server’s
secret key.

The client then generates the following fresh values: a secret key y, and a nonce 7.
It computes Y = ¢¥. It also decides on a cid, which is a connection identifier. It then

computes the Diffie-Hellman secret Doy as XY = ¢*¥. This will later be computed
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Public parameters:
p,g = 2y, m = |g]|

’ Client ‘ ’ Server ‘
Input: X Input: z
pks — X sks =x

Y & {1,...,m — 1} Fresh r,
Fresh cid, Y « ¢

Dcy = XY, Koy = KDF((D¢y, 7))
cid,r.,C1,Y

Cl (i EnCK1<M1)

Dg1 + Y* Kg1 < KDF((Dy,r.))
M; < Decg, (CY)

o & {1,...,m — 1},Fresh r;
X'=g" Dgy=Y"

KSQ = KDF<<D52, 7“5>)
cid,r,, Cy, X'

CQ (i EncKSQ(MQ)
DCZ — X’y, KCQ < KDF(<DCQ, T5>)

M2 < DGCKC2 (Cg)

Figure 4.1: SQUIC 0-RTT connection resumption protocol. Here, KDF is a key deriva-
tion function. Note that X = ¢g*. Fresh z denotes that x is being chosen uniformly
from some domain. In reality, this domain is given by the technical specification of
the protocol, and we expect secret values to be sufficiently long so as to be secure.
In this model the values are assumed to be hard to guess, but not represented in a
manner specific to their length.

by the server in much the same way as Diffie-Hellman, before being passed to key

derivation function K DF'.
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In its final step before creating the ciphertext to be sent, it derives a session key
using D¢ and the nonce r.. In the real implementation of QUIC, an HMAC-based
key derivation function (HKDF) with hash function SHA-256 is used. We will treat
key derivation as a black box function, so the specifics of HKDF are not important to
the Tamarin model. The input to KDF is represented in angled brackets to denote
that the two values are being wrapped somehow (e.g. concatenated) into a single
bitstring, as the arity of KDF is always 1.

After this setup, the client is ready to send its “client hello”. It needs to send
Y in order to achieve a shared session key with the server, but it also manages to
send data over. It encrypts M; with its derived session key, yielding ciphertext C',
and also sends rq, the nonce used for this derivation. The other data it sends is cid,
which allows both parties to track and associate messages with sessions.

Receiving these four objects over the public channel, the server now seeks to
decrypt the first message, derive a new session key, and send some data of its own
back to the client. In order to do this, it first needs to derive the ephemeral key K;
that was just used by the client. Using group associativity for agreement on Dy, it
derives Kg; by computing KDF((Y* r.)). After recovering M; using this key and
the agreed-upon encryption scheme, the server can begin deriving the new key K.
As the client did in the first step, it computes Kgo = KDF({Y®',r,)) for some fresh
(random) values of 2’ and r,. It sends the same relevant information over the public

channel back to the client, completing the two flows in Figure 4.1. We have

/

Koo = KDF((Dca, 1)) = KDF((X", rs)) = KDF((¢™ ¥, rs))

/

— KDF((g"",r,)) = KDF((Y*, 1)) = KDF((Dsy, 7)) = K,

implying that the server and client now share a session key.

4.2 Rules

We now describe the rewrite rules used in modelling SQUIC.

4.2.1 Preamble

We begin with similar boilerplate code to Section 3.1, but with two additions.

builtins: asymmetric-encryption, diffie-hellman
functions: kdf/1
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The most important element here is functions: kdf/1, which defines a black box
function of arity 1 called kdf. Although the math behind key derivation isn’t stated
in the model, Tamarin models it as a perfect cryptographic operation, meaning an

adversary cannot learn anything about its input [9, Sec. 2].

4.2.2 Create_Server

Unlike in Diffie-Hellman, we do not write a single rule to create both identities.

rule Create_Server:
[ Fr("x) 1
--[ CreateServer () ]1->
[ Server($s, " x) 1

The starting state of each party (client and server) requires different knowledge and

will therefore require different premises.

4.2.3 Create_Client

The Create_Client rule creates an identity for the client.

rule Create_Client:

let

Kic = kdf (<D1,~rc>)
in
[ Fr("y) ,Fr(“cid) ,Fr(“rc) ,Server ($S,7x) ]
--[ CreateClient () ]1->
[ Server($S,~x),Client($C,”y,Y,X,Klc, rc,”cid), Out(Y),0ut(X) ]

The client starts by knowing X, and it computes a new Y (see Figure 4.1). We use
a let binding to ensure all of these relationships hold when the rule is applied. This
rule contains everything before the first flow in Figure 4.1. Although this rule has
a specific association with the client, we also take the server as a premise of the
rule. We need to do this to relate the server and client’s keys, and we also take this

opportunity to call Out on each party’s public key.

4.2.4 Client_Hello

Rule Client Hello models the first flow in Figure 4.1.
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rule Client_Hello:
let
cl = aenc(Klc,<‘message’>)
in
[ Client($C,"y,Y,X,Klic, rc, cid) ]
--[ ClientHello () ]1->
[ Out(<~cid,“rc,cl,Y >) 1]

The let binding requires that C; be the encryption of some plaintext. The rule simply

calls the Out builtin on the c1 along with additional parameters Y, “rc, and ~cid.

4.2.5 Server_Respond

Rule Server_Respond contains all of the logic between the first and second flow of

Figure 4.1, and the conclusion of the rule results in the second flow.

rule Server_Respond:

let

D1 = Y"7x

Kis = kdf (<D1,%rc>)

Xprime = ’g’~"“xprime

D2 = Y~ " xprime

K2s = kdf (D2, rs>)

c2 = aenc(K2s,<’message2’>)
in

[ In(<“cid, rc,cl,Y>) ,Fr("xprime) ,Fr(“rs),Server ($S,7x) ]
--[ServResp (K2s)]->

[!Server_2($S, x,Xprime,Y,K2s, rs, " cid) , Out(<“cid, “rs, c2,
Xprime>)]

The let binding causes the modeled server to derive both K; and K5 and produce a
ciphertext to send. The premise of the rule requires an In to be seen on the public
channel, and the existence of a server identity, along with the creation of 2’ and ~ rs.
The conclusion of the rule instantiates a new type of persistent server fact called
IServer_2, which contains the new data that the server has derived in this step. It

also calls Out on the necessary items as in Client Hello.

4.2.6 Client_Receive_Response

Rule Client_Receive_Response implements all of the logic after the second flow in

Figure 4.1.

rule Client_Receive_Response:
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let
D2=Xprime~"y
K2c=kdf (D2, rs)
in
[!Client($C,"y,Y,X,K1,"rc, cid),In(<"cid, “rs, c2, Xprime>)]
--[ClientReceive (K2c)]->
[!Client_2($C, y,Y,X,K2c, rc, cid)]

It uses the let construct to derive K¢y from a calculated Dgo using kdf, and then

stores this derived key into a fact representing the new client state: !Client_2.

4.2.7 Client_Send _Data

The Client_Send Data rule does not refer to an element of the key exchange outlined
in Figure 4.1, but rather to the symmetric encryption that follows a successful key
exchange according to the protocol.
rule Client_Send_Data:
let
clientmessage = ‘clientmessage’
ciphertext = aenc(K2c,clientmessage)
in
[!Client_2($C, y,Y,X,K2c, rc, cid)]
--[CSD(ciphertext ,clientmessage)]->
[Out (ciphertext)]

This rule uses K2c¢ (the client’s resulting key after the exchange) to encrypt a plaintext
created by the server using a symmetric encryption algorithm.

The premise of this rule is the Client 2 fact with associated variables including
the public identifier for the client and the session ID. The rule results in an Out
fact which exposes the ciphertext. Additionally, the rule specifies an action fact
CSD(ciphertext, clientmessage) which represents the fact that the client sent
the ciphertext. The action fact is also associated with the original clientmessage

plaintext.

4.2.8 Server_Send Data

The Server_Send Data rule is identical to the Client_Send Data rule in function,

except that it models the server sending encrypted data rather than the client.

rule Server_Send_Data:
let

servermessage = ‘servermessage’
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ciphertext = aenc(K2s,message)
in
[!Server_2($S, x,Xprime,Y,K2s, rs, " cid)]
--[SSD(ciphertext ,servermessage)]->
[Out (ciphertext)]

Notice that the premise takes in the !Server_2 fact, which has K2s (the server’s key
after the key exchange) in Figure 4.1 associated with it. The other difference is in

the action fact, which has the name SSD to distinguish it from CSD.

4.2.9 Client_Rec Data

The Client Rec Data rule models a situation that results from the server sending
data symmetrically encrypted with K2s.
rule Client_Rec_Data:

let

plaintext_c = adec(K2c,ciphertext_c)

in

[!Client_2($C,"y,Y,X,K2c,"rc, cid) ,In(ciphertext_c)]

--[CRD(plaintext_c)]->

(]

It simply decrypts the ciphertext it receives, and puts CRD(plaintext_c) on the

trace.

4.2.10 Server_Rec_Data

The Server_Rec_Data rule models the same scenario as Client_Rec_Data on the
server side.
rule Server_Rec_Data:

let

plaintext_s = adec(K2s,ciphertext_s)

in

[!Server_2($S, x,Xprime,Y,K2s, rs, " cid) ,In(ciphertext_s)]

--[SRD(plaintext_s)]->

(]

4.3 Restrictions

Restrictions unique_server and unique_client guarantee that the rule to create the

client and server identities are only applied once, implying that there is at most one
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lemma message_correctness:
all-traces
"V #1 #j c p@ pl.
((CSD(C ¢, p@ ) @ #1) A (SRDC pl ) @ #5)) = (p@ = p1)"
simplify
solve( !Client_2( $C, ~y, Y, X, K2¢c, ~rc, ~cid ) wo #i )
case ClientReceiveResponse

solve( !Server_2( $S, ~x.1, Xprime, Y, K2s, ~rs.1, ~cid.1 ) wo #j )

case ServerRespond_case_1
by solve( !'KU( ~cid ) @ #vk.2 )
next
case ServerRespond_case_2
by solve( !'KUC ~cid ) @ #vk.2 )
ged
qed

Figure 4.2: Tamarin result for message_correctness

client and server in the system state at any time.

1 restriction unique_server:

2 "All #i #j. CreateServer () @#i & CreateServer () Q#j

3 restriction unique_client:

4 "All #i #j. CreateClient() @#i & CreateClient () Q#j

#jll

#jll

We can examine line 2 to understand how this restriction is logically implemented.

We state that for all moments in time #i and #j, where the rule for creating a server

is applied at each of the two times, it is implied that the two times are equal. We

will run a proof with and without these restrictions in place.

4.4 Lemmas

Now, we present the lemmas in the model.

4.4.1 message_correctness

Lemma message_correctness requires that after the key exchange stage is complete,

messages sent by a party will correctly decrypt to their original plaintexts.

lemma message_correctness:
"All #i #j c pO pl.
CSD(c,p0) @ #i & SRD(pl) @ #j

==>

pO = pi

Specifically, we use the CSD action fact and the SRD action fact to model the instance

where the client is sending data to the server, and we check that pO is equal to p1.

Figure 4.2 shows that Tamarin succeeds in finding a satisfying trace for the lemma.
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lemma shared_key:
all-traces
"Y K2c K2s #i #j.
((ServResp( K2s ) @ #i) A (ClientReceive( K2c ) @ #j)) =
((K2c = K2s) A (#1 < #5))"
simplify
solve( (-(kdf(<z.1, ~rs.1>) = kdf(<z, ~rs>))) ||
GG < #3)) )
case case_l
solve( Server( $S, ~x ) »3 #i )
case CreateClient
solve( Client( $C, ~y, Y.1, X, K1, ~rc.1, ~cid.1 ) wo #j )
case CreateClient
solve( !'KUC ~cid ) @ #vk.1 )
case ClientHello_case_1
solve( !KU( ~rc ) @ #vk.3 )
case (lientHello_case_1
by solve( !KU( ~cid.1 ) @ #vk.8 )
next
case ClientHello_case_2
by solve( !'KUC ~cid.1 ) @ #vk.8 )
next
case ServerRespond_case_1
by solve( !'KUC ~cid.1 ) @ #vk.8 )
next
case ServerRespond_case_2

Figure 4.3: Tamarin result for shared key

4.4.2 shared_key

Lemma shared_key makes use of action facts ServResp and ClientReceive at times
#i and #j.
lemma shared_key:

"All K2c K2s #i #j.
ServResp(K2s) @ #i & ClientReceive(K2c) @ #j

K2c = K2s & #i < #]

The goal of this lemma is to prove that for every possible trace, when the

Server_Respond rule is applied before the Client Receive Response rule (as should
be the case), the two parties will have agreement on the shared key. Ideally, this
will be true for an unbounded number of instantiations of each party. As we see in
Figure 4.3 (truncated for space), the lemma is true in general. This result is identical

in the case with the restrictions removed and the number of parties is unrestricted.

4.4.3 secrecy

The final lemma we prove is secrecy. This lemma states that for all traces where
action facts ServResp and ClientReceive appear (in the correct order), there do not

exist any points in time where the adversary knows the session key.
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lemma secrecy:
all-traces
"Y K2c K2s #i #5.
(((ServResp( K2s ) @ #i) a (ClientReceive( K2c ) @ #j)) a
# < #5)) -
(-3 #1.1 #j.1. (KC K2s ) @ #1.1) A (KC K2c ) @ #j.1O))"
simplify
solve( Server( $S, ~x ) »3 #i )
case CreateClient
solve( Client( $C, ~y, Y.1, X, K1, ~rc.1, ~cid.1 ) wo #j )
case CreateClient
solve( !KUC ~cid ) @ #vk.1 )
case ClientHello_case_1
solve( !KUC ~rc ) @ #vk.3 )
case ClientHello_case_1
by solve( !KU( ~cid.1 ) @ #vk.8 )
next
case ClientHello_case_2
by solve( !KU( ~cid.1 ) @ #vk.8 )
next
case ServerRespond_case_1
by solve( !KUC ~cid.1 ) @ #vk.8 )
next
case ServerRespond_case_2
by solve( !KU( ~cid.1 ) @ #vk.8 )
next
case fresh
by solve( !KU( ~cid.1 ) @ #vk.8 )

Figure 4.4: Tamarin result for secrecy

lemma secrecy:

A1l K2c K2s #i #j.

(
ServResp(K2s) @ #i &
ClientReceive (K2c) @ #j &
#i < #]

)

==> not(Ex #i #j . K(K2s) @ #i & K(K2c) @ #j)

We can see in Figure 4.4 that Tamarin has proven this lemma to be true, indicating
that SQUIC is indeed a secure protocol.



Chapter 5
Conclusion

In this thesis, we conducted a thorough exploration of two concepts in the field of
cryptography: key exchange, and formal verification of cryptographic protocols. We
introduced Tamarin Prover, describing in detail the components of a Tamarin model,
and provided a minimal example to illustrate the use of rewrite rules in protocol
specification. We then presented concepts in cryptography, providing insights into
the general problem of key exchange. We presented Diffie-Hellman, a specific key
exchange protocol, and analyzed it using Tamarin Prover. Finally, we presented and
modeled SQUIC, a simplified version of QUIC. We proved in Tamarin that it has
desired liveness and security properties while also demonstrating the practical utility

of the formal verification method.
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